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Abstract 

In this paper, the receding contact problem of functionally graded (FG) layer resting on a Winkler foundation 

is considered. It is assumed that the shear modulus of the layer change functionally along the depth whereas 

Poisson ratio remains constant. Arbitrary concentrated loads by means of arbitrary rigid punches are applied 

to the top of the layer. The problem is considered as a plain strain problem. A general formulation is obtained 

using elasticity theory and Fourier integral transform. Obtained formulation is valid for both symmetric and 

asymmetric systems. A parametric study is carried out to investigate the effect of material properties and 

loading on contact distances and contact pressures. It is found that, increasing rigidity of the bottom of the 

FG layer compared to the top of the FG layer, the contact distances between the circular punch and FG layer 

contact surface decreases whereas maximum contact pressure increases. In addition, placement of the rigid 

punches has an effect on the contact distances and contact pressures.  
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1. Introduction 

There are many engineering applications where the 

stress analysis at the interface between two bodies 

in contact is principal in the structural design as the 

response of the structure depends on it. Examples 

of these applications in engineering are railways, 

foundation grillages, connecting rods, joint and 

support elements, rolling mills, pavements of 

highway and airfield etc. [1,2]. So, problems 

involving the contact of two separate bodies 

pressed against each other have been widely 

studied by many researchers. Although the contact 

area increases after the application of the load in 

many cases, there are others where the contact area 
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becomes smaller. This kind of problem is called 

receding in literature.  

 Among the analytical studies on receding 

contact, the followings are recorded in literature. 

Keer et.al. [3] solved the smooth receding contact 

problem between an elastic layer and a half space 

when two bodies were pressed against each other 

by considering both plane and axisymmetric cases. 

The frictionless contact problem for an elastic layer 

resting on two quarter planes and loaded 

compressively was solved by Erdogan and Ratwani 

[4]. Civelek and Erdogan [5] investigated the 

general axisymmetric double frictionless contact 

problem for an elastic layer resting on a half space 

and pressed by an elastic stamp. The smooth 

receding contact problem for an elastic layer 
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pressed against a half space by frictionless semi-

infinite elastic was examined by Gecit [9]. Akavcı 

[6] studied a contact problem for an elastic layer 

supported by two elastic quarter planes both 

symmetrical and axisymmetric loadings. Comez 

et.al. [7] solved double receding contact problem 

for two elastic layers having different elastic 

constants and heights and pressed by a rigid stamp. 

Kahya et.al. [8] considered a frictionless receding 

contact problem between an anisotropic elastic 

layer and an anisotropic elastic half plane, when the 

two bodies were pressed together by means of a 

rigid circular stamp. Yaylacı and Birinci [9] studied 

a receding contact problem of two elastic layers 

supported by two elastic quarter planes. The 

solution of a receding contact problem using an 

analytical method and a finite element method was 

examined by Oner et.al. [10]. Karabulut et. al. [11] 

studied a receding contact problem of layer resting 

on a half plane and pressed by two flat blocks 

placed symmetrically  

 The processing techniques related to 

functionally graded materials (FGMs) and the 

importance of these processing was considered by 

Kieback et. al. [12]. Jin and Batra [13] studied  the 

thermal stresses and the stress intensity factor in an 

edge-cracked strip of a functionally graded material 

(FGM) subjected to sudden cooling at the cracked 

surface. The geometrically nonlinear response of 

inhomogeneous isotropic and functionally graded 

plates and shells was considered by Hui-Shen [14]. 

Sofiyev [15] focused on the thermal buckling of 

FGM shells resting on a two-parameter elastic 

foundation.  The buckling of cylindrical shells 

made of FGM in contact with the Pasternak elastic 

foundation subjected to uniform temperature rise is 

investigated by Bagherizadeh et. al.  [16]. 

Tornabene [17] investigated recovery of through-

the-thickness transverse normal and shear strains 

and stresses in statically deformed functionally 

graded (FG) doubly-curved sandwich shell 

structures and shells of revolution using the 

generalized zigzag displacement field and the 

Carrera Unified Formulation. 

 A receding contact plane problem for a 

functionally graded layer pressed against a 

homogeneous half space was analyzed by El-Borgi 

et.al. [18]. A multi-layered model for sliding 

frictional contact analysis of functionally graded 

materials (FGMs) with arbitrarily varying shear 

modulus under plane strain-state deformation has 

been developed by Ke and Wang [19]. The two-

dimensional frictionless contact problem of a 

coating structure consisting of a surface coating, a 

functionally graded layer and a substrate under a 

rigid cylindrical punch was investigated by Yang 

and Ke [20]. Barik et.al. [21] studied the stationary 

plane contact of a functionally graded heat 

conducting punch and a rigid insulated half-space. 

The frictionless contact problem of a functionally 

graded piezoelectric layered half-plane in-plane 

strain state under the action of a rigid flat or 

cylindrical punch was examined by Ke et.al. [22]. 

Sliding frictional contact between a rigid punch and 

a laterally graded elastic medium was studied by 

Dag et.al.[23]. Rhimi et.al. [24,25] considered the 

axisymmetric problem of a frictionless receding 

contact between an elastic functionally graded layer 

and a homogeneous half-space when the two bodies 

were pressed together and double receding contact 

between a rigid stamp of axisymmetric profile, an 

elastic functionally graded layer and a 

homogeneous half space. Chen and Chen [26] 

studied the contact behaviors of a graded layer 

resting on a homogeneous half space and pressed 

by a rigid stamp. Comez [27] considered a contact 

problem for a functionally graded layer loaded by 

means of a rigid stamp and supported by a Winkler 

foundation. The plane problem of a frictional 

receding contact formed between an elastic 

functionally graded layer and a homogeneous half 

space, when they were pressed against each other, 

was investigated by El-Borgi et.al. [28]. Adiyaman 

et. al. [29] studied the receding contact problem of 

FG layer resting on quarter planes and loaded by a 

symmetrically places distributed load.  The double 

receding contact problem between a FG layer and a 

homogeneous layer investigated by Yan and Li  

[30]. Liu et. al. [31] studied the axisymmetric 

receding contact problem of a FG coating under a 

rigid circular block. The axisymmetric contact 

problem of a FG layer resting on an elastic substrate 
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investigated by Turan et. al. [32]. Yan and Mi 

[33,34] studied contact problems of a structure 

consisted of a FG layer, a homogeneous layer and 

homogenous half plane.  

 Although the contact problem of a layer resting 

on Winkler foundation has been studied [35,27], 

the problems were solved only for a specific 

symmetric loading case. However, in this study, a 

general solution valid for any loading case, whether 

it is symmetric or asymmetric, is derived. In 

addition, this solution is compatible for 

programming purposes. Therefore, a computer 

program with a graphic user interface is developed 

and the numerical results are obtained used this 

program. Obtained numerical results are given in 

tables and figures. 

 

2. Definition of the problem 

The general solution of the contact problem of a FG 

layer of thickness h resting on a Winkler foundation 

is considered. It is assumed that the shear modulus 

of the layer, G , changes exponentially thorough 

the depth as given below whereas the Poisson ratio, 

 , remains constant. 

0

yG G e   (1) 

In which, 0G  is the shear modulus of the layer at 

the bottom ( 0y  ) and    is the non-homogeneity 

parameter which represents the change in the shear 

modulus. The loading and the geometry of the 

problem is given in Fig. 1 as representatively. The 

layer is loaded with n  concentrated loads by means 

of arbitrary rigid blocks. It is assumed that the layer 

is attached to the foundation and the effect of the 

gravity is neglected. The problem is considered as 

a plain strain problem. 

 

3. Formulation of the problem 

The equilibrium equations in terms of 

displacements (Navier Equations) for a FG layer 

can be obtained as follows. 
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in which, u  and v  are the x and y components of 

the displacement field, respectively; x , y  and  

xy  are the components of the stress field in the 

same coordinate system; x , y  and xy  are the 

corresponding components of the strain field; and 

  is a material property defined as  3 4    for 

plane strain problems. Eqs. (3, 4) are subjected to 

following boundary conditions. 

( ,0) ( ,0)y x kv x x       (4) 

1 1
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 In these boundary conditions, k  is the stiffness 

parameter of the Winkler foundation, jp  (

1,2,...,j n ) represents unknown contact 

pressures under the 
thj  block; jLb  and jRb  are 

unknown starting and ending points of the contact, 

respectively; and jf  is the derivative of the shape 

function of the 
thj  block with respect to x . 

Equilibrium conditions for the problem can be 

written as follows; 
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Fig. 1. The geometry and loading of the problem 

 

( )

b jR

j j

b jL

p x dx P  ( 1,2,...,j n  ) (7) 

in which, jP   ( 1,2,...,j n ) is the concentrated 

load applied to top of the
thj  block. 

 

4. Solution of the problem 

Using Fourier integral transform, u  and v  can be 

written as follows; 

( , ) ( , ) ,i xu x y y e dx 






   (8) 

( , ) ( , ) ,i xv x y y e dx 






   (9) 

in which, ( , )y  and ( , )y  are the Fourier 

transform of u  and v  with respect to the x-

coordinate, respectively. Plane elasticity equations 

(2,3) are partial differential equations and can be 

converted into ordinary differential equations using 

Fourier integral transform. The characteristic 

equation associated with these ordinary differential 

equations can be obtained as follows. 
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The roots of Eq. (10) can be expressed as given. 
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Solving ordinary differential equation represented 

by (12), the displacement and stress components of 

the FG layer can be expressed as follows. 
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In these components; km , kC  and kD  ( 1,...,4k  ) 

are known functions whereas kA  are unknown 

coefficient functions. Applying boundary 

conditions (4-7), unknown coefficients can be 

obtained in terms of unknown contact pressures, 

jp  ( 1,2,...,j n ), and contact distances, jLb  and

jRb . 

 Using unused boundary condition given in Eq. 

(8), the solution of the problem can be converted 

into the solution of an integral equation system 

which consists of n  singular integral equations and 

unknown contact pressures and contact distances 

can be obtained using the solution method 

suggested in [36] from the solution of this system.  

 Since the problem involves arbitrary loading, 

the analytical solution of the problem should be 

carried out for each loading case. In order to 

achieve this, a computer program is coded such that 

it performs the analytical solution of the problem 

using suggested method and displays obtained 

results. 

 

5. Numerical results and discussion 

The height of the graded layer, h , is taken as 1 

whereas the Poison’s ratio of the graded layer is 

taken as 0,25. Note that all quantities in the tables 

and figures are normalized. hG  defined as the shear 

modulus at the top of the FG layer ( y h ). 

0

h

hG G e  (19) 

 As the first loading case, a symmetric problem 

from the literature [27] is chosen in order to 

compare the results. In this problem, the layer is 

subjected to a concentrated load, P , by means of a 

circular rigid block with radius, R , placed at the 

symmetry axis and is resting on a Winkler 

foundation. The contact distances occurs in                 

[ ,a a ] in [27] whereas the contact distances 

occurs in [ 1 1,L Rb b  ] in this study. Since the problem 

is symmetric with respect to geometry as well as 

loading, comparing only a  and 1Rb  values can be 

sufficient. 

 Table 1 shows the comparison of a  and 1Rb  for 

various 0 hG G  and hk G  ratios. It can be seen that 

increasing 0 hG G  and hk G  results a reduction in 

contact distances. In addition, the written program 

produces almost same values in the literature.  

The contact pressures for various 0 hG G ratios are 

given in Fig. 2. As it is seen from the figure, if the 

0 hG G  ratio increases, contact distances decreases. 

Moreover, contact pressures increases for 

decreasing contact distances. Maximum pressures 

occur under the middle of the circular block.  

 As the second loading case, a symmetric 

problem with two identical circular blocks is 

chosen. The blocks are placed such that the 

distances from the middle of the blocks to the y  

axis is same and loaded with same concentrated 

loads. The first block is at the left whereas the 

second block is at the right. 

 Table 2 shows the contact distances for various 

block positions. As it can be seen from the table, 

since the problem is symmetric, obtained contact 

distances for one block are compatible with the 

contact distances of the other block. In addition, 

when blocks approach to each other, 1Rb  and 2Lb  

values approach to the middle of the block whereas 

1Lb  and 2Rb  values move away from the middle of 

the block.  

 The change in contact pressures under the left 

block and right block for various block positions is 

given in Fig. 3 and 4, respectively. It can be seen 

from the figures, maximum contact pressures 

increases if the block approaches to each other. 

Also, the pressures under the block are comparable 

because of symmetry.  
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Fig. 2. Dimensionless contact pressures for various 0 hG G ratios in case of one block 

 

Table 1. The comparison of half contact distances for various 0 hG G  and hk G  ratios in case of one block  
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h

k
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0 0.1
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G

G
   

 
0 1.001
h

G

G
  

 
0 10
h

G

G
  

 Comez 

[27] 

 Present 

study 

 Comez 

[27] 

 Present 

study 

 Comez 

[27] 

 Present 

study 

0.1  0.6220  0.6222  0.3725  0.3724  0.2779  0.2780 

1  0.4734  0.4732  0.3304  0.3304  0.2673  0.2674 

10  0.4452  0.4451  0.3151  0.3150  0.2617  0.2618 

    0.4415  0.4420  0.3116  0.3115  0.2594  0.2595 

 

Table 2. The contact distances for various block positions in case of two symmetrical blocks ( 0 0.5hG G  , 

1 2/ 1P P  , 0.1hk G  , 1 / 100R h  ) 

x h   
1Lb

 
1Rb

 
2Lb

 
2Rb

 
5

 

 -5.240230 -4.759518 4.759518 5.240230 

1

 

 -1.240149 -0.761891 0.761891 1.240149 

0.5

 

 -0.758593 -0.290634 0.290634 0.758593 

0.25

 

 -0.535542 -0.083235 0.083235 0.535542 

 

 

 



A general solution for the receding contact problem of a functionally graded layer… 142 

 

 
 

Fig. 3. Dimensionless contact pressures under the left block for various block positions in case of two symmetric blocks 

 

 
 

Fig. 4. Dimensionless contact pressures under the right block for various block positions in case of two symmetric blocks 

 

 As the last loading case, a problem with three 

blocks is chosen. The left and right blocks are 

cylindrical with similar or different radius. 

Whereas the block in the middle is flat.  First, 

second and third blocks are at the left, in the middle 

and at the right, respectively. 

 The variation of contact distances for various 

block radius ratios is given in Table 3. The radius 

of the right block is kept constant whereas the 

radius of the left block is changed. It can be seen 

from the table, the contact distances are not 

comparable between left and right blocks in case of 

asymmetric loading ( 1 3/ 1R R  ). In addition, the 

start and end of the contact distances goes to left 

and right, respectively, if 1 3/R R  increases. In other 

words, the contact distance increases because of the 

increase in the block radius. Although, the block 

radius of the right block is kept constant, there are 

small changes in the contact distances. Similar to 

left block, the start and end of the contact distances 
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goes to left and right, respectively, and the contact 

distance increases if 1 3/R R increases. 

 Figs. 5-7 show the change in the contact 

pressures for left block, right block and middle 

block, respectively, in case of various block radius 

ratios. As it is seen from the figures, if the radius of 

the block increases, the maximum contact pressure 

under the block decreases. Increasing the radius of 

the left block does not much affect in the contact 

pressure of the other two punches whether it is 

circular or flat and the contact pressure graphs for 

various block radius ratios are overlapped. 

Compared to circular blocks, the pressures under 

the flat block goes to infinite at the ends of the 

block. 

 

 

Table 3. The contact distances for various block radius ratios in case of three asymmetrical blocks ( 0 / 0.5hG G  , 

1 2/ 1P P  , 1 3/ 1P P  , / 0.1hk G  , 3 / 100R h  ) 

1 3/R R  
1Lb

 
1Rb

 
3Lb

 
3Rb

 
0,25 -2.117883 -1.884599 1.766879 2.243265 

0,5 -2.169165 -1.835812 1.766802 2.243333 

1,0 -2.243361 -1.766792 1.766792 2.243361 

2,0 -2.350717 -1.671286 1.766743 2.243644 

 

 

 
 

Fig. 5. Dimensionless contact pressures under the left block for various block radius ratios in case of three asymmetric 

blocks 
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Fig. 6. Dimensionless contact pressures under the right block for various block radius ratios in case of three asymmetric 

blocks 

 

 
 

Fig. 7. Dimensionless contact pressures under the middle block for various block radius ratios in case of three asymmetric 

blocks 
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